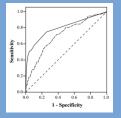


Dr Maxime Maignan Pôle Urgences Médecine Aiguë mmaignan@chu-grenoble.fr



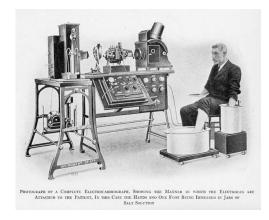
Epilepsies aux urgences

Quel bilan? Quel traitement?

Conflits d'intérêts

Aucun

Combattre quelques idées reçues...



Idée 1: l'épilepsie est une situation fréquente aux urgences

- 4% de la population développe une épilepsie
- Malaise / perte de connaissance / syncope
 → 2 à 5% des admissions
- Crise convulsive / épilepsie

→ 0,2 à 0,8%

Epilepsie = diagnostic difficile

Martindale et al 2011; Quinn et al 2006; Krumholz et al 1989

Seizure (2006) 15, 598-605

www.elsevier.com/locate/yseiz

The costs of epilepsy misdiagnosis in England and Wales

Ariadna Juarez-Garcia^a, Tim Stokes^{b,*}, Beth Shaw^b, Janette Camosso-Stefinovic^b, Richard Baker^b

90 000 patients diagnostiqués par excès 29 000 000 £ /an

Idée 2: la réalisation d'un EEG en urgence aide au diagnostic

- Sensibilité : 2-50%
- 50% des patients avec crise convulsive ont un EEG normal

Mais

- Amélioration de la prédiction du risque de récidive
- Classification syndromique

Nidhi Gupta et al 2013; American Academy Neurology 2007; Vercueil L 2011

Degré d'urgence de réalisation de l'EEG

Première crise épileptique non provoquée

EEG URGENT

EEG « DÈS QUE POSSIBLE »

EEG PROGRAMMÉ

Coma inexpliqué

Suites d'un état de mal convulsif avec défaut de réveil

Diagnostic neurophysiologique de mort encéphalique

Confusion inexpliquée

Suspicion d'état de mal non convulsif

Manifestations paroxystiques d'allure non épileptique psychogène, fréquentes (vidéo-EEG)

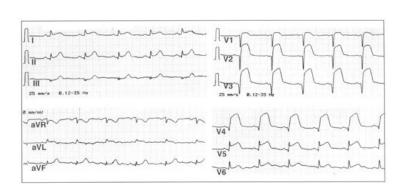
Suspicion de crises partielles fréquentes chez un sujet peu communiquant (personnes âgées) (vidéo EEG)

Crise épileptique chez un patient épileptique

Malaises d'origine incertaine (« funny turns »)

> Indications à évaluer en dehors de l'urgence

Vercueil L 2011



Idée 3 : Lors d'une 1ère crise chez un patient asymptomatique, l'imagerie cérébrale ne sert à rien

Imagerie cérébrale: 10% d'anomalies significatives

Douleur thoracique en régulation: 14% de SCA

TDM en urgence (SFMU et NICE)

- âge > 40 ans
- début focal avant généralisation
- déficit post critique
- confusion mentale persistante +/- traumatisme crânien ou OH
- fièvre avec signe d'HTIC
- antécédent néoplasique ou immunosuppression
- traitement anticoagulant
- isolement social
- première crise

Idée 4: les dosages sanguins des antiépileptiques sont utiles en urgence

- Dosages antiépileptiques: Grade C (SFMU 2006)
- Variabilité de la pharmacodynamie
 - Interindividuelle
 - Selon les classes thérapeutiques
- Pas de corrélation entre la prise en charge en urgence et les résultats des dosages sanguins
- Pourquoi ne pas interroger le patient ?

Kozer et al 2003; SFMU 2006

Examens biologiques recommandés

- Glycémie capillaire
- Ionogramme sanguin (natrémie)
- BHCG

- CPK (4h après la crise)
- Toxiques (OH)

symptomatic seizures in common metabolic disorders					
Biochemical parameter	Value				
Serum glucose	<36 mg/dl (2.0 mm)				
	or >450 mg/dl (25 mm) associated				
	with ketoacidosis				
	(whether or not there				
	is long-standing diabetes)				
Serum sodium	<115 mg/dl (<5 mm)				
Serum calcium	<5.0 mg/dl (<1.2 mm)				
Serum magnesium	<0.8 mg/dl (<0.3 mm)				
Urea nitrogen	<100 mg/dl (>35.7 mm)				
Creatinine	>10.0 mg/dl (>884 μM)				

Proposed cutoff values for acute

Beghi et al 2001; SFMU 2006

Idée 5 : diazepam, phénytoïne, des antiépileptiques du XXème siècle !

Original article

Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial

T.G. Sreenath^a, Piyush Gupta^a, K.K. Sharma^b, Sriram Krishnamurthy^{a,*}

Original Investigation

Lorazepam vs Diazepam for Pediatric Status Epilepticus A Randomized Clinical Trial

James M. Chamberlain, MD; Pamela Okada, MD; Maija Holsti, MD; Prashant Mahajan, MD, MBA; Kathleen M. Brown, MD; Cheryl Vance, MD; Victor Gonzalez, MD; Richard Lichenstein, MD; Rachel Stanley, MD, MPH; David C. Brousseau, MD, MPH; Joseph Grubenhoff, MD; Roger Zemek, MD; David W. Johnson, MD; Traci E. Clemons, PhD; Jill Baren, MD, MPH; for the Pediatric Emergency Care Applied Research Network (PECARN)

100

N VPA versus N PHT

(a) Clinical seizure cessation after drug administration

	VPA		PHT			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	MH, Fixed, 95% CI
Misra et al. 2006	23	35	14	33	60.7%	1.55 [0.97, 2.46]	2006	-
Gilad et al. 2008	13	18	7	9	39.3%	0.93 [0.59, 1.46]	2008	+
Total (95% CI)		53		42	100.0%	1.31 [0.93, 1.84]		•
Total events	36	(D = 0	21	0001				
Heterogeneity: Chi ² = 2 Test for overall effect: 7				b3%				0.01 0.1 1 10 10 Favours PHT Favours VPA

Brigo et al 2012

Table 2. Primary and Secondary Outcomes.*				
Outcome	Intention-to-Treat Analysis† (N = 893)			
	IM Midazolam (N=448)	IV Lorazepam (N = 445)		
Primary outcome				
Seizures terminated, no rescue therapy given				
No. of subjects	329	282		
% of subjects (95% CI)∫	73.4 (69.3–77.5)	63.4 (58.9–67.9)		
Treatment failed — no. of subjects (%)	119 (26.6)	163 (36.6)		
Seizures not terminated, no rescue therapy given	50 (11.2)	64 (14.4)		
Seizures not terminated, rescue therapy given	22 (4.9)	42 (9.4)		
Seizures terminated, rescue therapy given	47 (10.5)	57 (12.8)		

Sibergleit et al 2012

Idée 7 : Rajouter systématiquement un antiépileptique en prévention de la récidive

associated with metabolism	BZD substrates	Inhibitors	Inducers				
CYP 2C19	Diazepam (46)	Fluvoxamine (46) MHD (weak) (47) Omeprazole (46) Oxcarbazepine (46) Ticlopidine (46) Topiramate (46)	Dexamethasone (48) Phenobarbital (48) Phenytoin (49) Rifampin (46) St John's wort (50)			Riss e	t al 2008
CYP 3A4 C	Clonazepam (29)	Azole antifungals (e.g. ketoconazole) (46)	Carbamazepine (46)				
	Diazepam (46) Midazolam (46)	Cimetidine (46) Clarithromycin (46) Diltiazem (46) Erythromycin (46) Fluoxetine (51) Grapefruit juice (46)	Phenobarbital (48) Phenytoin (46) Rifabutin (46) Rifampin (52) Rifapentine (51) St John's wort (50)	UGT	Lorazepam (53) Oxazepam (54)	Valproate (55)	Carbamazepine (55) Lamotrigine (weak) (55) Phenobarbital (55) Phenytoin (55) Rifampin (52)

Tableau 5 : Recommandations à suivre jusqu'à la consultation neurologique qui doit avoir lieu dans la

semaine qui suit la crise

- Arrêter le travail
- Se reposer : éviter toute situation entraînant un risque de surmenage
- Beaucoup dormir : éviter toute situation favorisant le manque de sommeil
- Ne pas prendre de médicaments potentiellement convulsivants (exemple : tricycliques)
- Ne pas prendre irrégulièrement des médicaments ayant des propriétés anticonvulsivantes (exemple : benzodiazépines)
- Ne pas pratiquer d'activité dangereuse (conduite d'un véhicule à moteur, natation, escalade)
- Éviter de consommer de l'alcool.

Conclusions: « les vraies bonnes idées »

- Le diagnostic est avant tout anamnestique et clinique
- 1ère crise asymptomatique
 - → Glycémie, iono, ECG, TDM en urgence
- Diazepam et phénytoïne ont la vie dure
- Référer les patients vers une filière de référence de l'épilepsie

Merci

